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Abstract : From the last few decades there is tremendous development in science and technology for heterogeneous materials. 

The physical properties of heterogeneous materials vary all through their microstructures. In this work the  micromechanical 

analysis of heterogeneous materials is done and the effects of shape, size and orientation of inclusions on its properties is 
identified.  This work is based on the study and analysis of homogenization based micromechanics model incorporating finite 

element methods.  Steel fibre reinforced concrete and boron fibre aluminium composite are considered for analysis, i.e. the effect 

of shape, size and orientations of different morphologies on homogenized parameters is identified.  

 

Index Terms - Heterogeneous materials, finite element mesh, inclusions, steel fibre reinforced concrete, boron aluminium 

matrix composite. 

 

I. INTRODUCTION 

 

The determination of the properties of the homogeneous material that approximates the behaviour of the original 

heterogeneous material is called homogenization. Micromechanics deals with determining unknown properties of the 

heterogeneous material based on known properties of the particulate and the matrix. It is used to extrapolate existing composite 
property data to different particulate volume fraction or void content. The nature of distribution and properties of phases in a 

heterogeneous material is called its microstructure. The arrangement of these phases with respect to each other is also very 

important. A concept related to arrangement is that of connectedness of a phase. For example in a particle-matrix heterogeneous 

material the binder phase is connected and one can move relatively any distances through the material without leaving this phase. 

On the other hand the particles are disconnected and they do not form a connected phase because one can at most travel from one 

side of a particle to other. The nature of connectedness does not seem to be very clear in case of certain phase distributions 

because one can travel relatively large distances but not any distance. The most basic microstructural characterization tool is the 

volume fraction of a phase. 

The microstrucrural analysis is also known simply as micromechanics. It is assumed that microstructure is well 

characterized. Multi-scale analysis not only aims to understand the behavior of the microstructure, but also explores the 

relationship between microstructure and analysis of microstructure. In this work the main interest lies not only on microstructural 
characterization but also in microstructural analysis or simply micromechanics. The related subject of multiscale analysis aims to 

understand the behavior of the microstructure and additionally investigates the relationship between the microstructure and the 

analysis of the macrostructure. The determination of properties of a homogeneous material that approximates the behavior of the 

original heterogeneous problems termed as effective properties or macroscopic properties is performed by homogenization 

technique. These properties called effective because these approximates the effects of the microscale features on the macroscale. 

These methods aim at the extraction of macroscopic properties. In the present work, only effective elastic properties are attempted 

for determination. The macroscopic elastic stiffness tensor is the property for which one looks for in linear elasticity. The 

effective elastic constants are affected due to the change in volume fraction of the heterogeneity and due to the change of the 

different morphologies, sizes and orientations of the heterogeneities. 

 

II. GOVERNING EQUATIONS AND FORMULATION  

 
In the homogenization problem, the original heterogeneous material of the microstructure is replaced by a homogeneous 

one, i.e. the effective material. The procedure is introduced by taking an example homogenization problem to demonstrate it for 

infinitesimal deformations. 

Consider a microstructure that is heterogeneous on microscale. Let’s denote heterogeneous material by M which can 

have multiple phases i.e. ( )IM . A solid mechanics problem postured on the structure is of the form, 

Determine  ,u x t  so that 

( )div b u      in R                                                                                                                       (2.1) 

 

with boundary conditions 

 u u  On ,uR  t n = t  on tR                                                                                                       (2.2) 

and constitute equation 
^

( , )X   .                                                                                                  (2.3) 
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The explicit form of the constitutive equation 
^

 and density    oscillate from phase to phase due to the presence of 

heterogeneities. These can be denoted as 
( )^ I

  and ( )I . In such a case, the task to get the solution of the problem is challenging 

because the stress and strain fields are highly oscillating. A homogenization methodology is needed to construct a homogeneous 

effective material
*u . The approximate solution is obtained and then the same boundary conditions are applied to R  with u  

replaced by
*u .  

Homogenized problem can be represented for *M as, 

Determine   * ,u x t  so that  

* * * *( )div b u     in R                                                                                                                                     (2.4) 

With boundary conditions 
*u u   on ,uR * *t n t    on tR ,                                                                                                                          (2.5) 

and a constitutive equation  
^

* * *( )                                                                                                                                                                 (2.6) 

If an expression for *  i.e. effective density is available and 
^

*  i.e. effective constitutive equation then the solution can 

be obtained. The subject of homogenization is the determination of such effective quantities. The quality of approximation 

depends on the quality with which the approximations are determined. 

 

III. RESULTS AND DISCUSSION 

 

3.1 Variation of homogenized parameter with volume fraction 

The material to be analyzed is steel fibre reinforced concrete. The values of Young’s Modulus and Poisson ratio for steel fibre and 
concrete matrix are: 

Steel fibre: 

Young’s modulus (Ec):  210 GPa 

Poisson ratio (vc):                0.3 

Concrete matrix: 

Young’s modulus (Em):  25 GPa 

Poisson ratio (vm):                0.2 

Two distinct distributions are considered in this example. In one case, the base cell consists of a centrally located single circular 

fibre, the diameter of which is changed corresponding to various volume fractions. In other case, a random dispersion of circular 

fibres of different volume fractions constitutes the microstructure. Homogenized material constants of the base cell are conducted 

for an orthotropic material characteristic under plane stress conditions.  
 

Table 3.1: Homogenized material properties with different volume fractions 

 

Volume Fraction (%) Young's modulus (GPa) 

 

single inclusion random dispersion 

30 36.832 37.132 

40 42.095 42.988 

50 51.498 51.056 

60 76.118 61.661 

 

As is evident, the effective Young’s Modulus keeps on increasing with increase in volume fractions for both the cases of single 

inclusion and multi-inclusions. 

 

3.2 The effect of size of inclusions 

 The size of inclusions also has a profound effect on the homogenized coefficients. To analyze the same the effect of size 
of inclusion on the homogenized coefficient is analyzed in this section. The value of homogenized coefficient is determined for 

small, medium and large sized inclusions.  

 Two different morphologies are considered for the analysis, one is circular inclusion and other is diamond shaped 

inclusion or rhombus inclusion. The analysis is performed with single as well as random inclusion for both the types of inclusion. 

The material taken for the analysis is steel fibre reinforced concrete. The values of the Young’s Modulus and Poisson ratio for 

steel fibre and concrete matrix are already presented. The results of effective Young’s Modulus are shown in Table 3.2. 

Table 3.2:  Representing the values of homogenized coefficient, the effective Young’s modulus for different sizes of the 

inclusions 

 Size of inclusion Single Circular Random Circular Single Rhombus Random Rhombus 

Small 27.76 27.61 26.04 27.09 

Medium 29.70 29.32 28.72 28.2 

Large 42.09 42.99 35.34 35.35 
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From above table, it is observed that the effective Young’s Modulus increases with the increase in the size of the inclusions. 

However the values of effective Young’s Modulus are found to be lower for the diamond or rhombus shaped inclusions than that 

of the circular ones. 

 

3.3 The effect of orientation of inclusions 

  

 The particulates in the material have a profound effect on the homogenized properties. The inclusions or particulates can 

have different shapes, sizes and concentration. Following are the orientations for which the homogenized coefficients are 

determined  

a) Elliptical inclusion with random orientation. 

b) Elliptical inclusions with horizontal major axis. 
c) Circular inclusions. 

d) Elliptical inclusions with vertical major axis. 

The material taken for the analysis is boron fibre aluminium matrix. Constituent material properties are: 

Boron fiber: 

Young’s modulus (Ec):  400 GPa 

Poisson ratio (vc): 0.3 

Aluminum matrix: 

Young’s modulus (Em):  72.0 GPa 

Poisson ratio (vm):  0.3333. 

 

Table 3.3: Homogenized material properties for different orientations of inclusions 

 

Orientation of inclusions 
Micromechanical 

model (GPa) 
VCFEM model (GPa) 

Elliptical inclusion with random orientation 88.87 89.22 

Elliptical inclusion with horizontal orientation 87.77 89.53 

Elliptical inclusion with vertical orientation 87.77 88.65 

Circular inclusions with random orientation 87.93 89.78 

 

3.4 The effect of shape of inclusions 

The effect of different morphologies of the inclusions on maximum numerical volume fraction is discussed. Five 

different types of morphologies of the inclusions are analyzed for its maximum volume fractions which include 

(a) Circular 

(b) Square 

(c) Star shaped 
(d)  Elliptical 

(e) Hexagonal 

In this analysis the numbers of particles of the inclusion are kept fixed to 20 value and the random distribution of these 

particles are considered. The maximum theoretical volume fraction of the composite is taken as 0.62. The results obtained for 

maximum volume fraction for 20 numbers of particles and maximum theoretical volume fraction of 0.62 are presented in Table 

3.4 

Table 3.4:  Maximum volume fraction for different shapes of the inclusion phase 

Shape of the inclusions Max. numerical volume fraction 

Circular 0.6159 

Square 0.3892 

Star 0.122 

Elliptical 0.3117 

Hexagonal 0.3059 

 

From the results presented in Table 3.4, it is observed that the maximum volume fraction near the theoretical one is 

obtained only in case of circular inclusions whereas the star shape inclusions represents the minimum value of numerical volume 

fraction. The above results indicate that there is a significant effect of the shape or morphology of the inclusion on the volume 

fraction of the composite material. 

 

IV.  CONCLUSION 

 

In this work the  micromechanical analysis of heterogeneous materials is done and the effect of shape, size and 

orientation of inclusions on its properties is identified.  This work is based on the study and analysis of homogenization based 

micromechanics model incorporating finite element methods.  From the above results it is clear that the effective Young’s 
Modulus keeps on increasing with increase in volume fractions for both the cases of single inclusion and multi-inclusions. The 

effective Young’s Modulus increases with the increase in the size of the inclusions. However the values of effective Young’s 

Modulus are found to be lower for the diamond or rhombus shaped inclusions than that of the circular ones. The effective young’s 

modulus shows slight variation with the change in orientation of the inclusions, however it is highest for elliptical inclusions with 

random orientations. It is observed that the maximum volume fraction near the theoretical one is obtained only in case of circular 
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inclusions whereas the star shape inclusions represents the minimum value of numerical volume fraction. There is significant 

effect of shape, size and orientation of inclusions on homogenized parameters. 
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